Hi, I'm

Forhad

Data Science & Machine Learning Instructor

I teach professionals and learners how to build production-grade ML systems — from demand forecasting with ARIMA & XGBoost to interactive Shiny dashboards and reproducible Quarto reports. R-first, Python-capable. Real datasets. No fluff.

10+ Courses
5K+ Learners
2 Languages
# Build. Visualize. Predict.
library(tidymodels)
library(modeltime)

model_spec <- boost_tree(
    trees = 500,
    learn_rate = 0.01
) %>%
  set_engine("xgboost") %>%
  set_mode("regression")

forecast <- model_spec %>%
  fit(value ~ ., data = train)
# → RMSE: 0.042 ✓

Building clarity in complex systems

I'm a data science instructor focused on bridging the gap between theoretical ML and production-ready analytics — built primarily with R and the tidyverse ecosystem, complemented by Python where it shines. My courses are designed for professionals who want to solve real business problems, not just pass exams.

With experience across demand forecasting, hierarchical time-series modeling, interactive Shiny applications, reproducible Quarto-based reporting, and Python-based ML pipelines with scikit-learn and LightGBM, I bring structure and clarity to topics that are often taught in a disorganized way. Every course I build uses real-world datasets, production patterns, and step-by-step workflows.

I produce courses in both English (for a global audience) and Bangla (for learners in Bangladesh and the Bengali-speaking community), because quality technical education should be accessible in your own language.

📐
Structured Curriculum

Clear learning paths from fundamentals to production

🗂️
Real Datasets

Industry-relevant data, not toy examples

🌍
Bilingual Content

Courses in English & Bangla for wider reach

Core Tech Stack

R tidyverse tidymodels Shiny Quarto ggplot2 modeltime data.table plumber R Markdown Python scikit-learn LightGBM Pandas XGBoost forecast SQL Docker Kubernetes Power BI

What I teach & build

Deep focus areas with real production experience

Machine Learning Systems

End-to-end ML pipelines — primarily in R with tidymodels, plus Python with scikit-learn. From feature engineering and model selection to deployment and monitoring.

  • tidymodels
  • scikit-learn
  • XGBoost

Forecasting & Time Series

Demand forecasting, sales prediction, and anomaly detection using R's fable & modeltime and Python's statsmodels & LightGBM on real business datasets.

  • ARIMA
  • modeltime
  • LightGBM

Hierarchical Modeling

Reconciled forecasts across product hierarchies, geographies, and business units — ensuring coherent predictions at every level.

  • Bottom-Up
  • Top-Down
  • Reconciliation

MLOps & Kubernetes

Containerized model serving with R plumber and Python FastAPI, CI/CD for ML, orchestration with Kubernetes, and experiment tracking.

  • Docker
  • K8s
  • plumber
  • FastAPI

Shiny Apps & Quarto

Production-grade interactive dashboards with Shiny, and reproducible scientific reports, blogs, and books with Quarto and R Markdown.

  • Shiny
  • Quarto
  • R Markdown

Business Analytics Strategy

Data-driven decision frameworks, KPI design, dashboard strategy, and translating analytical outputs into actionable business insights.

  • Power BI
  • SQL
  • Strategy

Learn at your own pace

Structured, practical courses in English and Bangla

Popular

Demand Forecasting with R & modeltime

Build production-grade demand forecasting systems using tidymodels, modeltime, and XGBoost on real retail datasets.

12 modules Intermediate
Enroll Now
New

End-to-End ML Pipelines with tidymodels

From raw data to deployed model — learn to architect, build, and maintain ML systems in R that scale with recipes, parsnip, and plumber.

15 modules Advanced
Enroll Now
New

Production Shiny Apps & Quarto Reports

Build interactive dashboards with Shiny, deploy them at scale, and create reproducible reports and books with Quarto.

14 modules Intermediate
Enroll Now

MLOps for R & Python: Docker, APIs & K8s

Containerize R plumber and Python FastAPI models, set up CI/CD pipelines, and deploy on Kubernetes for production ML.

10 modules Advanced
Enroll Now

Python ML Essentials: scikit-learn & LightGBM

A focused Python track — learn scikit-learn pipelines, LightGBM tuning, and Pandas-based feature engineering for production ML.

11 modules Intermediate
Enroll Now
জনপ্রিয়

R দিয়ে ডেটা সায়েন্স ফান্ডামেন্টালস

R, tidyverse, ggplot2 এবং বাস্তব ডেটাসেট ব্যবহার করে ডেটা সায়েন্সের মৌলিক ধারণা শিখুন।

১৪ মডিউল Beginner
ভর্তি হন

মেশিন লার্নিং A-Z বাংলায় (R দিয়ে)

tidymodels দিয়ে সুপারভাইজড থেকে আনসুপারভাইজড লার্নিং — সম্পূর্ণ বাংলায় হাতে-কলমে শিখুন।

১৮ মডিউল Intermediate
ভর্তি হন
নতুন

Shiny ড্যাশবোর্ড ও Quarto রিপোর্ট বাংলায়

ইন্টারেক্টিভ Shiny অ্যাপ তৈরি এবং Quarto দিয়ে রিপ্রোডিউসিবল রিপোর্ট ও ডকুমেন্টেশন শিখুন।

১০ মডিউল Intermediate
ভর্তি হন

Python দিয়ে মেশিন লার্নিং বাংলায়

scikit-learn, Pandas এবং LightGBM ব্যবহার করে হাতে-কলমে মেশিন লার্নিং শিখুন — সম্পূর্ণ বাংলায়।

১২ মডিউল Intermediate
ভর্তি হন

Latest articles

Insights on ML systems, forecasting, and data-driven decisions

Get in touch

Have a question or want to collaborate? Reach out anytime.

This form is front-end only. Connect a backend or use Formspree / Netlify Forms for production.